Over the years, more and more interactions between Discrete Geometry and Additive Combinatorics are being exposed. These include results such as the Green–Tao ordinary lines theorem and Solymosi’s sum-product bound. One reason for this connection is that both fields study the structure and symmetries of various objects (such as sets of points or subsets of additive groups). In this post I will discuss one of the simplest connections between the two fields — studying the additive energy of a set of points in a real space . The main goal of the post is to present two open problems that involve the additive energy of such sets. I heard one of these problems from Nets Katz and the other from Ciprian Demeter. In future posts we might discuss more involved interactions between the two fields.

# Additive combinatorics

# Additive Combinatorics Lecture Notes (part 2)

I finished my additive combinatorics class, and placed all of the lecture notes in the pdf files page. This quarter was rather short and I did not get to do several topics I had in mind. Perhaps I’ll add notes for some of these at some point. For now, let me just list the chapters that did not appear in the previous post.

- Chapter 4 is about arithmetic progressions in dense sets. It includes Behrend’s construction, Meshulam’s theorem, and Roth’s theorem. Due to the recent developments, Meshulam’s theorem already seems somewhat outdated…
- Chapter 5 consists of Sander’s proof of the quasi-polynomial Freiman-Ruzsa theorem in (following Lovett’s presentation). This includes proving a special case of the probabilistic technique of Croot and Sisask.
- Chapter 6 presents the technique of relying on the third moment energy. It then uses this technique to study convex sets. I hope to also add a variant of the Balog-SzemerĂ©di-Gowers theorem.