We’re Hiring!

Come join us! This year our math department has two types of positions available. We have a standard tenure track position, which would hopefully continue our awesome sequence of recent hires. But this post is not about the standard position. Instead, I’d like to talk a bit about our other type of position – a Lecturer position.

The lecturer position is basically a teaching-based “tenure-track” position. This brief description gives the wrong impression about the position. So here is a bit more information:

  • Lecturers must have a Ph.D. in math. They choose whether they wish to continue doing research – some do and others don’t. (This summer one of our lecturers had a paper accepted to the Annals of Mathematics!)
  • Our lecturers are some of the most highly respected people in the department. All of our current lecturers are amazingly professional and productive. They run a large part of the department, work closely with the chair, and so on.
  • After 5 years, a lecturer applies to receive a CCE status (Certificate of Continuous Employment), somewhat similar to tenure.

If you are a strong and enthusiastic teacher, and may be interested to join our team, apply on mathjobs.org. (Here is our standard tenure track position). I very much hope that we will hire someone who could be part of our REU program. But I’m only one person, and others have other priorities.


Since Baruch College is not the most well-known place in the mathematical world, I would like to also tell you a bit about us.

  • Baruch College is highly focused affordability, diversity, and social mobility. It is consistently ranked #1 in Social Mobility Index, towards the top of Money magazine’s Best Colleges For Your Money, WSJ Biggest Bargains Among U.S. Colleges, Affordable elite ranking, and so on.
  • We have a strong group of “junior” mathematicians. For example, Louis-Pierre Arguin‘s work was recently featured in the Bourbaki seminar (Louis-Pierre also holds an NSF career award). Other recent hires include strong people such as Yumeng Ou and Andrew Obus.
  • Our department’s financial math team has several impressive achievements. The master’s program in Financial Engineering is consistently ranked as one of the top in the world (see here and here) and the financial math students keep winning trading competitions (see here).
  • I believe that another advantage of our department is its unusually friendly and positive atmosphere. Somehow one does not see very bad politics here. For example, our last vote for the executive committee (handling hiring, tenure, etc.) was over extremely quickly and was almost unanimous.

Abstraction is Hard

A few weeks ago I read Malcolm Gladwell’s book The Tipping Point. The book doesn’t really deal with mathematics, but it does contain one math-related anecdote. This anecdote demonstrates an interesting principle of learning mathematics, so I wanted to share it.

Problem 1. We have a deck of cards, such that each card contains a digit on one side and an English letter on the other. We are dealing four cards, with the following result:


We are told that behind every vowel there is an even digit. Which of the four cards should we flip to check whether this claim is true?

I suspect that most mathematicians would only need a few seconds to answer this. On the other hand, people who are not used to mathematical logic would probably need a minute to get to the correct answer.

Problem 2. A cop walks into a bar to check for underage drinking and sees four people drinking. From a first glance, the cop notices that the first is a teenager, the second drinks water, the third is middle aged, and the fourth is drinking beer. Which of the four people should the cop check more carefully?

Most people would probably answer this problem immediately. This is interesting, since the two problems are completely identical! The only difference is that the second problem has a social context while the first is abstract. Even experienced mathematicians probably need to think for a couple of seconds to solve the first problem, but not the second.

This is a nice demonstration of why it is difficult to start studying advanced math. I will definitely use it when teaching proofs classes.

Here is another example of abstract things being hard to get:

Light Red Over Black 1957 by Mark Rothko 1903-1970


I did not post anything for almost five months – life has been very busy lately! I hope to get back to posting regularly relatively soon. In the meantime, I wanted to at least have a brief updates post.

I just made a revision of my book about incidences and polynomial methods. Joshua Zahl and I have been running a polynomial methods summer school for graduate students, at MSRI. This led to several topics being added to the book, such as a proof of the cap set theorem and a sum-product bound over finite fields. I also added many exercises, with a focus on clever elegant problems whose solution is not too technical. Many of those exercise have been carefully checked by the participants of the summer school 🙂


If you’d like to see more from the summer school, you can now watch close to 25 hours of Joshua Zahl and myself talking about polynomial methods. Starting here. We were lucky to have Marina Iliopoulou and Cosmin Pohoata helping us run this program. And also lucky to have a group of impressive graduate students participating and solving all of our weird exercise!

Our REU program for this summer is getting close to its end. I am amazed by the amount of strong results this summer’s participants produced. Once some of these results will become available online, this would be a good topic for a separate post.


I plan to soon write about several interesting events that we will be holding this academic year, upcoming hiring, and other news. I just need some time!

Incidences: Open Problems (part 1)

The past decade brought us several breakthroughs in the study of geometric incidences. Most importantly, Guth and Katz introduced polynomial partitioning, and this has become the main technique for studying incidences. The recent breakthroughs sometimes leads to a wrong impression about the state of this field. Actually, most of the main incidence problems are still wide open. At least one of the biggest incidence problems has been completely stuck since the early 1980’s.

This leads me to something that has been bothering me for a while (but probably not a single other person in the world…) For some reason, one can find the following statement in the Wikipedia page for the Szemeredi-Trotter theorem.


Solymosi and Tao indeed obtained an impressive and near sharp bound for an incidence problem. But it was not a general bound for points and varieties. Most incidence problems involving algebraic varieties in higher dimensions remain wide open. (fixed. Thank you David Eppstein!)

This post is the first of a series which will survey some of the main open problems involving incidence geometry. This series will illustrate how much we do not know about geometric incidences. If you are an outsider, you might start to look down at us incidence researchers. Over 35 years have passed since the Szemeredi-Trotter theorem, and since then we managed to resolve very few other incidence problems.

Problem 1. The unit distances problem

One may say that the main open problem involving geometric incidences is Erdös’s unit distances problem. To quote the book Research Problems in Discrete Geometry, this is

“possibly the best known (and simplest to explain) problem in combinatorial geometry”.

The problem simply asks: In a set of {n} points in {\mathbb{R}^2}, what is the maximum number of pairs of point at a distance of one? For example, {n} equally spaced points on a line span {n-1} unit distances. Using a lattice, one can obtain {n^{1+c/\log\log n}} unit distances, for some constant {c}. The current best upper bound states that every {n} points in the plane span {O(n^{4/3})} unit distances. Even though this is a central problem in Discrete Geometry, with many consequences, the last progress for it was obtained in the early 1980’s. The lower bound has not change since the 1940’s!

The unit distances problem is asymptotically equivalent to finding the maximum number of incidences between {n} points and {n} circles or radius one in {\mathbb{R}^2}. Indeed, consider a set of {n} points in {\mathbb{R}^2}. By placing a circle of radius one around every point, the number of point-circle incidences is twice the number of unit distances. One can move from the incidence problem to the unit distances problem in a similar manner.


It turns out that the problem significantly changes for different norms:

  • As already stated, for the Euclidean distance norm (the {\ell_2}-norm) this is a long-standing difficult problem.
  • For the {\ell_1}– and {\ell_\infty}-norms, one can easily find {n} points that span {\Theta(n^2)} unit distances.
  • Valtr showed that there is a simply-defined norm for which the answer is {\Theta(n^{4/3})}.
  • Matoušek showed that for a generic norm the maximum number of unit distances is {O(n \log n \log \log n)}.

Note that the conjectured bound {n^{1+c/\log\log n}} for {\ell_2} is different from all of the bounds stated above. In particular, this bound is asymptotically larger than {n \log n \log \log n}. Thus, any solution for the unit distances problem must rely an a property that is almost unique to the Euclidean distance norm. One may say that this problem is about studying properties of the underlying geometry.

The distinct distances problem is another main problem of the field. Guth and Katz almost completely solved this problem, and their work is often considered as the field’s most significant progress in the past decade. One can think of the unit distances problem as more difficult, since a solution to unit distances implies a solution to distinct distances, up to sub-polynomial factors. (For Harmonic Analysis people, the distinct distances problem seemed to have been the more interesting one, due to its connections with the Kakeya conjecture).

Problem 2. Incidences with other algebraic curves in {\mathbb{R}^2}

We know the maximum number of incidences between {m} points and {n} lines in {\mathbb{R}^2}. But what happens when replacing the lines with {n} circles? Parabolas? Arbitrary polynomial curves of degree three? Unfortunately, all of these problems are wide open. If you would now arbitrarily choose another variant, it will most likely also be wide open. The only other cases that are resolved in {\mathbb{R}^2} are a few very specific 2-parameter families of curves. For example, the problem is solved for parabolas of the form {y=x^2+ax+b}, and also for circles incident to the origin.

One can come up with infinitely many incidence problems with algebraic curves in {\mathbb{R}^2}. So what are the main questions? The previous problem already discussed incidences with unit circles. The problem of incidences with arbitrary circles also has many applications. However, the following conjecture is probably considered to be more important than incidences with arbitrary circles.

When discussing a family of algebraic curves, we may consider the number of parameters necessary to define a member of the family. For example, an arbitrary circle can be defined as {(x-a)^2+(y-b)^2=r^2} for parameters {a,b,r}. That is, the set of circles in {\mathbb{R}^2} is a three-parameter family. Similarly, the parabolas defined as {y=ax^2+bx+c} also form a three-parameter family.

Conjecture 1. Let {P} be a set of {m} points and let {\Gamma} be a family of {n} constant-degre algebraic curves defined using {k} parameters, both in {\mathbb{R}^2}. If {n\le m}, then

\displaystyle  I(P,\Gamma)=O_k\left(m^{2/3}n^{2/3}+m+n\right).

It is known that the restriction {n\le m} in the conjecture is necessary. For examples, see this construction for circles and this construction for parabolas. At the moment, the conjecture is open for any family of algebraic curves defined using at least three parameters. The current best bound, by Sharir and Zahl, is stated in the following theorem.

Theorem 2 Let {P} be a set of {m} points and let {\Gamma} be a set of {n} constant-degree algebraic curves defined using at most {k} parameters, both in {\mathbb{R}^2}. Then for any {\varepsilon>0},

\displaystyle  I(P,\Gamma)=O_k\left(m^{\frac{2k}{5k-4}}n^{\frac{5k-6}{5k-4}+\varepsilon}+m^{2/3}n^{2/3}+m+n\right).

Unlike the conjecture, this bound strongly depends on {k}. Sometimes the conjecture is stated with {k} being the degree of the curves, instead of the number of parameters. This is not so different, since the set of algebraic curves of degree at most {k} is defined using {\binom{k+2}{2}} parameters. (Still, the two cases are not quite the same.)

That’s it for now. More problems will appear in the next post of this series.

The Baruch Distinguished Mathematics Lecture Series

I am happy to announce the beginning of the Baruch Distinguished Mathematics Lecture Series. In this series we will bring established mathematicians to give talks to a general mathematical audience.

Our first Distinguished Lecture, by Bjorn Poonen, will be “Undecidability in Number Theory”. Click here for the full details. The talk is open to everyone, and includes refreshments. After the talk we will also go to lunch with the speaker.


Incidences in a Recent Work of Walsh

Recently, Miguel Walsh posted a very interesting paper on arXiv. The main purpose of the paper is to study various properties of polynomials and varieties. These properties are related to incidence problems – some originally arose from studying incidences. Walsh also presents new incidence bounds as applications of his results. In this post I’ll briefly discuss the incidence aspects of Walsh’s paper. Since this is a rather specialized post for incidence researchers, it assumes familiarity with the problems and notation.

Miguel Walsh

It seems to me that Walsh’s paper makes three main contributions to the study of incidence problems. The first two contributions are explicitly stated in the paper:

  • The paper derives a new polynomial partitioning theorem for points on a variety, with a good dependency on the degree of the variety. This was the missing step for removing an extra \varepsilon  in the exponent from most of the existing incidence bounds in {\mathbb R}^d  . For example, it should remove the extra \varepsilon  in the results of several of my papers, such as this one and that one.
  • As an application of his results, Walsh introduces an incidence problem that I did not see before. In this problem we study incidences between points and varieties in {\mathbb R}^d  , but the degrees of the varieties are not constant. That is, the degrees of the varieties are allowed to depend on the number of points and on the number of varieties. It would be interesting to see how this variant develops. For example, what applications in other subfields it might have.

The two above incidence results are definitely interesting, but I suspect that the paper would have a more significant effect on the incidence community in a different way. The paper makes significant progress in our understanding of polynomials and varieties, which directly affect the algebraic methods used to derive incidence bounds. This improved understanding could potentially be what we need to address some of the main problems that we have been trying to solve for a while. Me and other incidences researchers will definitely spend time reading the paper carefully, and think how it might fit with these problems. Walsh also mentions a follow-up paper, and I wonder if he has something similar in mind. I am planning to soon write a post about the current main open problems in incidence theory, and will then mention more clearly what I am referring to.

It might also be worth discussing the lower bounds part of the paper. The paper contains matching lower bounds for some of its incidence results. However, these lower bounds seem to apply specifically to the new variant of incidences with varieties of non-constant degrees. The “standard” problem of incidences with bounded-degree hypersurfaces in {\mathbb R}^d  remains open. In particular, we have matching lower bounds only in some cases. For an up-to-date discussion of the known lower bounds, see for example the relevant part in the introduction of my recent work with Thao Do.

An Uncitable Result?

My colleague Pablo Soberon just showed me an unusually problematic result to cite, and I wanted to share this weird story. If you have other weird citation stories, do tell!

Yes, this is a second silly post in a row. Lately I’m not finding the time to write more serious ones. And the silly stories need to be documented somewhere…

This story begins with a Japanese anime show called The Melancholy of Haruhi Suzumiya. I don’t know much about this show, but apparently there are several different orders in which one can watch the episodes. This led a fan of the show to ask for the minimum number of episodes one needs to watch, so that you saw all the episodes in every possible order. In other words, the minimum sequence of the numbers from \{1,\ldots,n\}  that contains every possible permutation of the numbers. (if I understand correctly, each order has to appear consecutively, with no additional numbers in between). This was on 4chan in 2011. A solution was then offered by an anonymous user, and this disappeared among the other weird anime discussions around the web.


It turns out that some people have been studying the above question as a serious math problem, prior to the show and not aware of it. The sequence containing all of the possible permutations is referred to as a superpermutation. See for example here and here. One paper about this was even published in the journal “Discrete Mathematics” in 2013.

Now the people coming from the mathematical angle discovered the original 4chan discussion, and in it the solution to the problem. So can they cite this result? It is by an anonymous person and appeared on an anime fans website. If this is not complicated enough, the relevant website no longer exists. Instead, the original discussion was discovered on a site that archives old online discussions. And it’s unclear how stable this archive site is. Luckily, this is not my problem!