Additive Energy of Real Point Sets

Over the years, more and more interactions between Discrete Geometry and Additive Combinatorics are being exposed. These include results such as the Green–Tao ordinary lines theorem and Solymosi’s sum-product bound. One reason for this connection is that both fields study the structure and symmetries of various objects (such as sets of points or subsets of additive groups). In this post I will discuss one of the simplest connections between the two fields — studying the additive energy of a set of points in a real space {\mathbb R}^d  . The main goal of the post is to present two open problems that involve the additive energy of such sets. I heard one of these problems from Nets Katz and the other from Ciprian Demeter. In future posts we might discuss more involved interactions between the two fields.

Ciprian Demeter and Nets Katz.

Continue reading