The 2nd Elbe Sandstones Geometry Workshop

I’ve been quiet for a couple of weeks because I am doing some traveling. My first stop was The 2nd Elbe Sandstones Geometry Workshop. This workshop had an interesting location — a mountain in the middle of nowhere in the Czech Republic. Here is a picture of most of the participants.

P1000140

The 1st Elbe Sandstones Geometry Workshop took place 13 years ago. Following is a picture from there, in front of the same door (it is also the only picture I ever saw of Micha Sharir without a beard).

rynarice

Advertisements

Random Stories from IPAM – Part 2

If you are not in Los Angeles but are interested in these topics, you can now view videos of many of the talks that we had here. Talks from the tutorials week can be found here. Talks from the workshop “Combinatorial Geometry Problems at the Algebraic Interface” can be found here. I assume that talks from the workshop “Tools from Algebraic Geometry” will also be available soon.

Landsberg
A talk by Joseph Landsberg.

Another brief update: You might remember that in my previous IPAM post I was excited about a talk by Larry Guth. Not only that you can now watch the video of this talk, but you can also read the paper.

And now for quote of the week:

It is like defining a ham sandwich as “what you have in your lunchbox after taking the apple out”.

                Ben Lund, unsatisfied with a famous textbook’s definition of Grassmannians.

After three weeks without any main events, another workshop begins tomorrow. So more updates will follow.

Random Stories from IPAM – Part1

Since my previous post, I moved from freezing New York to sunny LA. I am participating in a semester on Algebraic Techniques for Combinatorial and Computational Geometry, at the IPAM institute. The lack of posts on the blog in the past several weeks is due to the constant activities and the large number of interesting people to interact with. This post contains some random stories from my stay at IPAM.

IMG_2181
During pie day (March 14th), all of the food served in IPAM was round.

So far the main events were a week of tutorials and another week consisting of a workshop about “Combinatorial Geometry Problems at the Algebraic Interface”. These contained many interesting talks, which were also videotaped. Once the videos will be online, I will post a link in the blog. Here I only mention one talk which gave me quite a surprise – Larry Guth‘s talk.

At the beginning of his talk, Larry stated that he will present a significantly simpler variant of part the distinct distances proof (the one by Katz and himself). You might remember that, using the Elekes-Sharir framework, the distinct distances problem is reduced to a point-line incidences problem in {\mathbb R}^3  : Given a set of n  lines, such that every point is incident to at most O(\sqrt{n})  of the lines and that every plane and regulus contain at most O(\sqrt{n})  of the lines, what is the maximum number of points that can be incident to at least k  of the lines (where 2\le k \le \sqrt{n}  ). Larry’s new technique proves the following slightly weaker incidences bound.

Theorem (Guth `14). Consider a set \cal L  of n  lines in {\mathbb R}^3  , so that any surface of degree at most c_\varepsilon  (a constant that depends only on \varepsilon  ) contains at most \sqrt{n}  lines of L  . Then for any \varepsilon>0  and 2 \le r \le \sqrt{n}  , the number of points of {\mathbb R}^3  that are contained in at least r  lines of L  is O(\frac{n^{3/2+\varepsilon}}{r^2}).

The surprising part is that the new proof was based on constant sized partitioning polynomials (on which I plan to write a couple of expository posts, as part of my expository series about the polynomial method). When using such polynomials for problems of this sort, one encounters a difficultly. It is hard to describe this difficulty without first explaining the technique, but my impression is that this difficulty was the main issue in various other recent incidences-related projects, and that now we might see various other works that rely on Larry’s technique. In his talk, Larry also mentioned that this technique can work for other types of curves, which immediately implies a series of improved point-curve incidence bounds in {\mathbb R}^3  .

TaoTalk
A talk by Tao in IPAM. How many of the mathematicians in the audience can you recognize?

And for something completely different: I had an issue with my visa, and was told that I should exit and reenter the country. This resulted in a 13-hour bus trip to Tijuana and back to LA. My only souvenir from this trip is the following picture of a pharmacy for people that are waiting in line to enter the US. I wonder sort of things people buy at a pharmacy while waiting to go through immigration…

IMG_2184

There’s a lot more to tell, so more IPAM stories later on.